3.11.28 \(\int \frac {1}{\sqrt [3]{1-x^2} (3+x^2)^2} \, dx\) [1028]

3.11.28.1 Optimal result
3.11.28.2 Mathematica [C] (warning: unable to verify)
3.11.28.3 Rubi [A] (warning: unable to verify)
3.11.28.4 Maple [F]
3.11.28.5 Fricas [F]
3.11.28.6 Sympy [F]
3.11.28.7 Maxima [F]
3.11.28.8 Giac [F]
3.11.28.9 Mupad [F(-1)]

3.11.28.1 Optimal result

Integrand size = 19, antiderivative size = 543 \[ \int \frac {1}{\sqrt [3]{1-x^2} \left (3+x^2\right )^2} \, dx=\frac {x \left (1-x^2\right )^{2/3}}{24 \left (3+x^2\right )}-\frac {x}{24 \left (1-\sqrt {3}-\sqrt [3]{1-x^2}\right )}+\frac {\arctan \left (\frac {\sqrt {3}}{x}\right )}{8\ 2^{2/3} \sqrt {3}}+\frac {\arctan \left (\frac {\sqrt {3} \left (1-\sqrt [3]{2} \sqrt [3]{1-x^2}\right )}{x}\right )}{8\ 2^{2/3} \sqrt {3}}-\frac {\text {arctanh}(x)}{24\ 2^{2/3}}+\frac {\text {arctanh}\left (\frac {x}{1+\sqrt [3]{2} \sqrt [3]{1-x^2}}\right )}{8\ 2^{2/3}}-\frac {\sqrt {2+\sqrt {3}} \left (1-\sqrt [3]{1-x^2}\right ) \sqrt {\frac {1+\sqrt [3]{1-x^2}+\left (1-x^2\right )^{2/3}}{\left (1-\sqrt {3}-\sqrt [3]{1-x^2}\right )^2}} E\left (\arcsin \left (\frac {1+\sqrt {3}-\sqrt [3]{1-x^2}}{1-\sqrt {3}-\sqrt [3]{1-x^2}}\right )|-7+4 \sqrt {3}\right )}{16\ 3^{3/4} x \sqrt {-\frac {1-\sqrt [3]{1-x^2}}{\left (1-\sqrt {3}-\sqrt [3]{1-x^2}\right )^2}}}+\frac {\left (1-\sqrt [3]{1-x^2}\right ) \sqrt {\frac {1+\sqrt [3]{1-x^2}+\left (1-x^2\right )^{2/3}}{\left (1-\sqrt {3}-\sqrt [3]{1-x^2}\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {1+\sqrt {3}-\sqrt [3]{1-x^2}}{1-\sqrt {3}-\sqrt [3]{1-x^2}}\right ),-7+4 \sqrt {3}\right )}{12 \sqrt {2} \sqrt [4]{3} x \sqrt {-\frac {1-\sqrt [3]{1-x^2}}{\left (1-\sqrt {3}-\sqrt [3]{1-x^2}\right )^2}}} \]

output
1/24*x*(-x^2+1)^(2/3)/(x^2+3)-1/48*arctanh(x)*2^(1/3)+1/16*arctanh(x/(1+2^ 
(1/3)*(-x^2+1)^(1/3)))*2^(1/3)-1/24*x/(1-(-x^2+1)^(1/3)-3^(1/2))+1/48*arct 
an(3^(1/2)/x)*2^(1/3)*3^(1/2)+1/48*arctan((1-2^(1/3)*(-x^2+1)^(1/3))*3^(1/ 
2)/x)*2^(1/3)*3^(1/2)+1/72*3^(3/4)*(1-(-x^2+1)^(1/3))*EllipticF((1-(-x^2+1 
)^(1/3)+3^(1/2))/(1-(-x^2+1)^(1/3)-3^(1/2)),2*I-I*3^(1/2))*2^(1/2)*((1+(-x 
^2+1)^(1/3)+(-x^2+1)^(2/3))/(1-(-x^2+1)^(1/3)-3^(1/2))^2)^(1/2)/x/((-1+(-x 
^2+1)^(1/3))/(1-(-x^2+1)^(1/3)-3^(1/2))^2)^(1/2)-1/48*3^(1/4)*(1-(-x^2+1)^ 
(1/3))*EllipticE((1-(-x^2+1)^(1/3)+3^(1/2))/(1-(-x^2+1)^(1/3)-3^(1/2)),2*I 
-I*3^(1/2))*((1+(-x^2+1)^(1/3)+(-x^2+1)^(2/3))/(1-(-x^2+1)^(1/3)-3^(1/2))^ 
2)^(1/2)*(1/2*6^(1/2)+1/2*2^(1/2))/x/((-1+(-x^2+1)^(1/3))/(1-(-x^2+1)^(1/3 
)-3^(1/2))^2)^(1/2)
 
3.11.28.2 Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 6 vs. order 4 in optimal.

Time = 10.12 (sec) , antiderivative size = 157, normalized size of antiderivative = 0.29 \[ \int \frac {1}{\sqrt [3]{1-x^2} \left (3+x^2\right )^2} \, dx=\frac {1}{648} x \left (x^2 \operatorname {AppellF1}\left (\frac {3}{2},\frac {1}{3},1,\frac {5}{2},x^2,-\frac {x^2}{3}\right )+\frac {27 \left (1-x^2+\frac {63 \operatorname {AppellF1}\left (\frac {1}{2},\frac {1}{3},1,\frac {3}{2},x^2,-\frac {x^2}{3}\right )}{9 \operatorname {AppellF1}\left (\frac {1}{2},\frac {1}{3},1,\frac {3}{2},x^2,-\frac {x^2}{3}\right )+2 x^2 \left (-\operatorname {AppellF1}\left (\frac {3}{2},\frac {1}{3},2,\frac {5}{2},x^2,-\frac {x^2}{3}\right )+\operatorname {AppellF1}\left (\frac {3}{2},\frac {4}{3},1,\frac {5}{2},x^2,-\frac {x^2}{3}\right )\right )}\right )}{\sqrt [3]{1-x^2} \left (3+x^2\right )}\right ) \]

input
Integrate[1/((1 - x^2)^(1/3)*(3 + x^2)^2),x]
 
output
(x*(x^2*AppellF1[3/2, 1/3, 1, 5/2, x^2, -1/3*x^2] + (27*(1 - x^2 + (63*App 
ellF1[1/2, 1/3, 1, 3/2, x^2, -1/3*x^2])/(9*AppellF1[1/2, 1/3, 1, 3/2, x^2, 
 -1/3*x^2] + 2*x^2*(-AppellF1[3/2, 1/3, 2, 5/2, x^2, -1/3*x^2] + AppellF1[ 
3/2, 4/3, 1, 5/2, x^2, -1/3*x^2]))))/((1 - x^2)^(1/3)*(3 + x^2))))/648
 
3.11.28.3 Rubi [A] (warning: unable to verify)

Time = 0.48 (sec) , antiderivative size = 596, normalized size of antiderivative = 1.10, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.421, Rules used = {316, 27, 405, 233, 305, 833, 760, 2418}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\sqrt [3]{1-x^2} \left (x^2+3\right )^2} \, dx\)

\(\Big \downarrow \) 316

\(\displaystyle \frac {x \left (1-x^2\right )^{2/3}}{24 \left (x^2+3\right )}-\frac {1}{24} \int -\frac {x^2+21}{3 \sqrt [3]{1-x^2} \left (x^2+3\right )}dx\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{72} \int \frac {x^2+21}{\sqrt [3]{1-x^2} \left (x^2+3\right )}dx+\frac {\left (1-x^2\right )^{2/3} x}{24 \left (x^2+3\right )}\)

\(\Big \downarrow \) 405

\(\displaystyle \frac {1}{72} \left (\int \frac {1}{\sqrt [3]{1-x^2}}dx+18 \int \frac {1}{\sqrt [3]{1-x^2} \left (x^2+3\right )}dx\right )+\frac {\left (1-x^2\right )^{2/3} x}{24 \left (x^2+3\right )}\)

\(\Big \downarrow \) 233

\(\displaystyle \frac {1}{72} \left (18 \int \frac {1}{\sqrt [3]{1-x^2} \left (x^2+3\right )}dx-\frac {3 \sqrt {-x^2} \int \frac {\sqrt [3]{1-x^2}}{\sqrt {-x^2}}d\sqrt [3]{1-x^2}}{2 x}\right )+\frac {\left (1-x^2\right )^{2/3} x}{24 \left (x^2+3\right )}\)

\(\Big \downarrow \) 305

\(\displaystyle \frac {1}{72} \left (18 \left (\frac {\arctan \left (\frac {\sqrt {3} \left (1-\sqrt [3]{2} \sqrt [3]{1-x^2}\right )}{x}\right )}{2\ 2^{2/3} \sqrt {3}}+\frac {\arctan \left (\frac {\sqrt {3}}{x}\right )}{2\ 2^{2/3} \sqrt {3}}+\frac {\text {arctanh}\left (\frac {x}{\sqrt [3]{2} \sqrt [3]{1-x^2}+1}\right )}{2\ 2^{2/3}}-\frac {\text {arctanh}(x)}{6\ 2^{2/3}}\right )-\frac {3 \sqrt {-x^2} \int \frac {\sqrt [3]{1-x^2}}{\sqrt {-x^2}}d\sqrt [3]{1-x^2}}{2 x}\right )+\frac {\left (1-x^2\right )^{2/3} x}{24 \left (x^2+3\right )}\)

\(\Big \downarrow \) 833

\(\displaystyle \frac {1}{72} \left (18 \left (\frac {\arctan \left (\frac {\sqrt {3} \left (1-\sqrt [3]{2} \sqrt [3]{1-x^2}\right )}{x}\right )}{2\ 2^{2/3} \sqrt {3}}+\frac {\arctan \left (\frac {\sqrt {3}}{x}\right )}{2\ 2^{2/3} \sqrt {3}}+\frac {\text {arctanh}\left (\frac {x}{\sqrt [3]{2} \sqrt [3]{1-x^2}+1}\right )}{2\ 2^{2/3}}-\frac {\text {arctanh}(x)}{6\ 2^{2/3}}\right )-\frac {3 \sqrt {-x^2} \left (\left (1+\sqrt {3}\right ) \int \frac {1}{\sqrt {-x^2}}d\sqrt [3]{1-x^2}-\int \frac {-\sqrt [3]{1-x^2}+\sqrt {3}+1}{\sqrt {-x^2}}d\sqrt [3]{1-x^2}\right )}{2 x}\right )+\frac {\left (1-x^2\right )^{2/3} x}{24 \left (x^2+3\right )}\)

\(\Big \downarrow \) 760

\(\displaystyle \frac {1}{72} \left (18 \left (\frac {\arctan \left (\frac {\sqrt {3} \left (1-\sqrt [3]{2} \sqrt [3]{1-x^2}\right )}{x}\right )}{2\ 2^{2/3} \sqrt {3}}+\frac {\arctan \left (\frac {\sqrt {3}}{x}\right )}{2\ 2^{2/3} \sqrt {3}}+\frac {\text {arctanh}\left (\frac {x}{\sqrt [3]{2} \sqrt [3]{1-x^2}+1}\right )}{2\ 2^{2/3}}-\frac {\text {arctanh}(x)}{6\ 2^{2/3}}\right )-\frac {3 \sqrt {-x^2} \left (-\int \frac {-\sqrt [3]{1-x^2}+\sqrt {3}+1}{\sqrt {-x^2}}d\sqrt [3]{1-x^2}-\frac {2 \sqrt {2-\sqrt {3}} \left (1+\sqrt {3}\right ) \left (1-\sqrt [3]{1-x^2}\right ) \sqrt {\frac {\left (1-x^2\right )^{2/3}+\sqrt [3]{1-x^2}+1}{\left (-\sqrt [3]{1-x^2}-\sqrt {3}+1\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {-\sqrt [3]{1-x^2}+\sqrt {3}+1}{-\sqrt [3]{1-x^2}-\sqrt {3}+1}\right ),-7+4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt {-x^2} \sqrt {-\frac {1-\sqrt [3]{1-x^2}}{\left (-\sqrt [3]{1-x^2}-\sqrt {3}+1\right )^2}}}\right )}{2 x}\right )+\frac {\left (1-x^2\right )^{2/3} x}{24 \left (x^2+3\right )}\)

\(\Big \downarrow \) 2418

\(\displaystyle \frac {1}{72} \left (18 \left (\frac {\arctan \left (\frac {\sqrt {3} \left (1-\sqrt [3]{2} \sqrt [3]{1-x^2}\right )}{x}\right )}{2\ 2^{2/3} \sqrt {3}}+\frac {\arctan \left (\frac {\sqrt {3}}{x}\right )}{2\ 2^{2/3} \sqrt {3}}+\frac {\text {arctanh}\left (\frac {x}{\sqrt [3]{2} \sqrt [3]{1-x^2}+1}\right )}{2\ 2^{2/3}}-\frac {\text {arctanh}(x)}{6\ 2^{2/3}}\right )-\frac {3 \sqrt {-x^2} \left (-\frac {2 \sqrt {2-\sqrt {3}} \left (1+\sqrt {3}\right ) \left (1-\sqrt [3]{1-x^2}\right ) \sqrt {\frac {\left (1-x^2\right )^{2/3}+\sqrt [3]{1-x^2}+1}{\left (-\sqrt [3]{1-x^2}-\sqrt {3}+1\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {-\sqrt [3]{1-x^2}+\sqrt {3}+1}{-\sqrt [3]{1-x^2}-\sqrt {3}+1}\right ),-7+4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt {-x^2} \sqrt {-\frac {1-\sqrt [3]{1-x^2}}{\left (-\sqrt [3]{1-x^2}-\sqrt {3}+1\right )^2}}}+\frac {\sqrt [4]{3} \sqrt {2+\sqrt {3}} \left (1-\sqrt [3]{1-x^2}\right ) \sqrt {\frac {\left (1-x^2\right )^{2/3}+\sqrt [3]{1-x^2}+1}{\left (-\sqrt [3]{1-x^2}-\sqrt {3}+1\right )^2}} E\left (\arcsin \left (\frac {-\sqrt [3]{1-x^2}+\sqrt {3}+1}{-\sqrt [3]{1-x^2}-\sqrt {3}+1}\right )|-7+4 \sqrt {3}\right )}{\sqrt {-x^2} \sqrt {-\frac {1-\sqrt [3]{1-x^2}}{\left (-\sqrt [3]{1-x^2}-\sqrt {3}+1\right )^2}}}-\frac {2 \sqrt {-x^2}}{-\sqrt [3]{1-x^2}-\sqrt {3}+1}\right )}{2 x}\right )+\frac {\left (1-x^2\right )^{2/3} x}{24 \left (x^2+3\right )}\)

input
Int[1/((1 - x^2)^(1/3)*(3 + x^2)^2),x]
 
output
(x*(1 - x^2)^(2/3))/(24*(3 + x^2)) + (18*(ArcTan[Sqrt[3]/x]/(2*2^(2/3)*Sqr 
t[3]) + ArcTan[(Sqrt[3]*(1 - 2^(1/3)*(1 - x^2)^(1/3)))/x]/(2*2^(2/3)*Sqrt[ 
3]) - ArcTanh[x]/(6*2^(2/3)) + ArcTanh[x/(1 + 2^(1/3)*(1 - x^2)^(1/3))]/(2 
*2^(2/3))) - (3*Sqrt[-x^2]*((-2*Sqrt[-x^2])/(1 - Sqrt[3] - (1 - x^2)^(1/3) 
) + (3^(1/4)*Sqrt[2 + Sqrt[3]]*(1 - (1 - x^2)^(1/3))*Sqrt[(1 + (1 - x^2)^( 
1/3) + (1 - x^2)^(2/3))/(1 - Sqrt[3] - (1 - x^2)^(1/3))^2]*EllipticE[ArcSi 
n[(1 + Sqrt[3] - (1 - x^2)^(1/3))/(1 - Sqrt[3] - (1 - x^2)^(1/3))], -7 + 4 
*Sqrt[3]])/(Sqrt[-x^2]*Sqrt[-((1 - (1 - x^2)^(1/3))/(1 - Sqrt[3] - (1 - x^ 
2)^(1/3))^2)]) - (2*Sqrt[2 - Sqrt[3]]*(1 + Sqrt[3])*(1 - (1 - x^2)^(1/3))* 
Sqrt[(1 + (1 - x^2)^(1/3) + (1 - x^2)^(2/3))/(1 - Sqrt[3] - (1 - x^2)^(1/3 
))^2]*EllipticF[ArcSin[(1 + Sqrt[3] - (1 - x^2)^(1/3))/(1 - Sqrt[3] - (1 - 
 x^2)^(1/3))], -7 + 4*Sqrt[3]])/(3^(1/4)*Sqrt[-x^2]*Sqrt[-((1 - (1 - x^2)^ 
(1/3))/(1 - Sqrt[3] - (1 - x^2)^(1/3))^2)])))/(2*x))/72
 

3.11.28.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 233
Int[((a_) + (b_.)*(x_)^2)^(-1/3), x_Symbol] :> Simp[3*(Sqrt[b*x^2]/(2*b*x)) 
   Subst[Int[x/Sqrt[-a + x^3], x], x, (a + b*x^2)^(1/3)], x] /; FreeQ[{a, b 
}, x]
 

rule 305
Int[1/(((a_) + (b_.)*(x_)^2)^(1/3)*((c_) + (d_.)*(x_)^2)), x_Symbol] :> Wit 
h[{q = Rt[-b/a, 2]}, Simp[q*(ArcTan[Sqrt[3]/(q*x)]/(2*2^(2/3)*Sqrt[3]*a^(1/ 
3)*d)), x] + (Simp[q*(ArcTanh[(a^(1/3)*q*x)/(a^(1/3) + 2^(1/3)*(a + b*x^2)^ 
(1/3))]/(2*2^(2/3)*a^(1/3)*d)), x] - Simp[q*(ArcTanh[q*x]/(6*2^(2/3)*a^(1/3 
)*d)), x] + Simp[q*(ArcTan[Sqrt[3]*((a^(1/3) - 2^(1/3)*(a + b*x^2)^(1/3))/( 
a^(1/3)*q*x))]/(2*2^(2/3)*Sqrt[3]*a^(1/3)*d)), x])] /; FreeQ[{a, b, c, d}, 
x] && NeQ[b*c - a*d, 0] && EqQ[b*c + 3*a*d, 0] && NegQ[b/a]
 

rule 316
Int[((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_), x_Symbol] :> Sim 
p[(-b)*x*(a + b*x^2)^(p + 1)*((c + d*x^2)^(q + 1)/(2*a*(p + 1)*(b*c - a*d)) 
), x] + Simp[1/(2*a*(p + 1)*(b*c - a*d))   Int[(a + b*x^2)^(p + 1)*(c + d*x 
^2)^q*Simp[b*c + 2*(p + 1)*(b*c - a*d) + d*b*(2*(p + q + 2) + 1)*x^2, x], x 
], x] /; FreeQ[{a, b, c, d, q}, x] && NeQ[b*c - a*d, 0] && LtQ[p, -1] &&  ! 
( !IntegerQ[p] && IntegerQ[q] && LtQ[q, -1]) && IntBinomialQ[a, b, c, d, 2, 
 p, q, x]
 

rule 405
Int[(((a_) + (b_.)*(x_)^2)^(p_)*((e_) + (f_.)*(x_)^2))/((c_) + (d_.)*(x_)^2 
), x_Symbol] :> Simp[f/d   Int[(a + b*x^2)^p, x], x] + Simp[(d*e - c*f)/d 
 Int[(a + b*x^2)^p/(c + d*x^2), x], x] /; FreeQ[{a, b, c, d, e, f, p}, x]
 

rule 760
Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], 
s = Denom[Rt[b/a, 3]]}, Simp[2*Sqrt[2 - Sqrt[3]]*(s + r*x)*(Sqrt[(s^2 - r*s 
*x + r^2*x^2)/((1 - Sqrt[3])*s + r*x)^2]/(3^(1/4)*r*Sqrt[a + b*x^3]*Sqrt[(- 
s)*((s + r*x)/((1 - Sqrt[3])*s + r*x)^2)]))*EllipticF[ArcSin[((1 + Sqrt[3]) 
*s + r*x)/((1 - Sqrt[3])*s + r*x)], -7 + 4*Sqrt[3]], x]] /; FreeQ[{a, b}, x 
] && NegQ[a]
 

rule 833
Int[(x_)/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3] 
], s = Denom[Rt[b/a, 3]]}, Simp[(-(1 + Sqrt[3]))*(s/r)   Int[1/Sqrt[a + b*x 
^3], x], x] + Simp[1/r   Int[((1 + Sqrt[3])*s + r*x)/Sqrt[a + b*x^3], x], x 
]] /; FreeQ[{a, b}, x] && NegQ[a]
 

rule 2418
Int[((c_) + (d_.)*(x_))/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = N 
umer[Simplify[(1 + Sqrt[3])*(d/c)]], s = Denom[Simplify[(1 + Sqrt[3])*(d/c) 
]]}, Simp[2*d*s^3*(Sqrt[a + b*x^3]/(a*r^2*((1 - Sqrt[3])*s + r*x))), x] + S 
imp[3^(1/4)*Sqrt[2 + Sqrt[3]]*d*s*(s + r*x)*(Sqrt[(s^2 - r*s*x + r^2*x^2)/( 
(1 - Sqrt[3])*s + r*x)^2]/(r^2*Sqrt[a + b*x^3]*Sqrt[(-s)*((s + r*x)/((1 - S 
qrt[3])*s + r*x)^2)]))*EllipticE[ArcSin[((1 + Sqrt[3])*s + r*x)/((1 - Sqrt[ 
3])*s + r*x)], -7 + 4*Sqrt[3]], x]] /; FreeQ[{a, b, c, d}, x] && NegQ[a] && 
 EqQ[b*c^3 - 2*(5 + 3*Sqrt[3])*a*d^3, 0]
 
3.11.28.4 Maple [F]

\[\int \frac {1}{\left (-x^{2}+1\right )^{\frac {1}{3}} \left (x^{2}+3\right )^{2}}d x\]

input
int(1/(-x^2+1)^(1/3)/(x^2+3)^2,x)
 
output
int(1/(-x^2+1)^(1/3)/(x^2+3)^2,x)
 
3.11.28.5 Fricas [F]

\[ \int \frac {1}{\sqrt [3]{1-x^2} \left (3+x^2\right )^2} \, dx=\int { \frac {1}{{\left (x^{2} + 3\right )}^{2} {\left (-x^{2} + 1\right )}^{\frac {1}{3}}} \,d x } \]

input
integrate(1/(-x^2+1)^(1/3)/(x^2+3)^2,x, algorithm="fricas")
 
output
integral(-(-x^2 + 1)^(2/3)/(x^6 + 5*x^4 + 3*x^2 - 9), x)
 
3.11.28.6 Sympy [F]

\[ \int \frac {1}{\sqrt [3]{1-x^2} \left (3+x^2\right )^2} \, dx=\int \frac {1}{\sqrt [3]{- \left (x - 1\right ) \left (x + 1\right )} \left (x^{2} + 3\right )^{2}}\, dx \]

input
integrate(1/(-x**2+1)**(1/3)/(x**2+3)**2,x)
 
output
Integral(1/((-(x - 1)*(x + 1))**(1/3)*(x**2 + 3)**2), x)
 
3.11.28.7 Maxima [F]

\[ \int \frac {1}{\sqrt [3]{1-x^2} \left (3+x^2\right )^2} \, dx=\int { \frac {1}{{\left (x^{2} + 3\right )}^{2} {\left (-x^{2} + 1\right )}^{\frac {1}{3}}} \,d x } \]

input
integrate(1/(-x^2+1)^(1/3)/(x^2+3)^2,x, algorithm="maxima")
 
output
integrate(1/((x^2 + 3)^2*(-x^2 + 1)^(1/3)), x)
 
3.11.28.8 Giac [F]

\[ \int \frac {1}{\sqrt [3]{1-x^2} \left (3+x^2\right )^2} \, dx=\int { \frac {1}{{\left (x^{2} + 3\right )}^{2} {\left (-x^{2} + 1\right )}^{\frac {1}{3}}} \,d x } \]

input
integrate(1/(-x^2+1)^(1/3)/(x^2+3)^2,x, algorithm="giac")
 
output
integrate(1/((x^2 + 3)^2*(-x^2 + 1)^(1/3)), x)
 
3.11.28.9 Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\sqrt [3]{1-x^2} \left (3+x^2\right )^2} \, dx=\int \frac {1}{{\left (1-x^2\right )}^{1/3}\,{\left (x^2+3\right )}^2} \,d x \]

input
int(1/((1 - x^2)^(1/3)*(x^2 + 3)^2),x)
 
output
int(1/((1 - x^2)^(1/3)*(x^2 + 3)^2), x)